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It is shown that for periodic area-preserving mappings with localized regular motion and global
chaotic motion, the global diffusion has a long subdiffusive transient regime in the case of weak
chaos. This is because the universal decay speed of boundary-layer trapping time distribution is
only slightly greater than the critical value for asymptotic subdiffusion. Deviations from normal

behavior are studied.

PACS number(s): 05.45.+b, 05.40.+j, 47.52.+]

Hamiltonian systems with 1% degrees of freedom are
the lowest dimension Hamiltonian systems which may
exhibit chaotic behavior. In spite of their relative sim-
plicity, such systems provide models for many problems
in various fields of physics. Some well known examples
include magnetic confinement in tokamaks [1], particle
motion in accelerators, and passive particle movement in
three dimensional (3D) incompressible fluids [2,3]. For
such Hamiltonian systems, there may exist in the phase
space a global region to which a chaotic orbit is acces-
sible. Transport properties of this chaotic region have
both theoretic implications (such as those for statistical
mechanics [4]) and practical applications (such as particle
confinement in tokamaks [1]). Because of intermixing of
strongly chaotic segments and quasiregular segments of
the chaotic orbits, the “random walk” of a global chaotic
orbit is not necessarily characterized by a Gaussian prob-
ability distribution. Our understanding of this issue is
not conclusive and many recent studies are devoted to
it [5-7). According to dispersion rates of orbits in the
phase space, (r%(t)) ~ t7, the diffusion is classified as
normal with v = 1, superdiffusive with v > 1, or subdif-
fusive with v < 1. A number of studies have been made
for superdiffusion [7-9], but there is no conclusive an-
swer to the existence of subdiffusion in similar systems.
Although Schwigerl and Krug have interesting results
on subdiffusion in a piecewise area-preserving map [10],
their map is not analytic, and it is not clear whether their
results are relevant to the analytic maps associated with
Hamiltonian systems.

Hamiltonian systems with 1% degrees of freedom can
be reduced to so-called area-preserving mappings. The
latter contain essential properties of the former. In such
systems, superdiffusion is associated with existence of un-
bounded regular orbits in the 3D phase space. Sticking of
particles near the boundary of the regular motion region
(named the KAM region after the Kolmogorov-Arnold-
Moser theorem) creates long flights [2,7] and thus su-
perdiffusion in the direction of the regular flow [8,11].
The existence of unbounded regular orbits in the Hamil-
tonian systems is reflected in the so-called accelerator
modes in the corresponding area-preserving mapping.
Accelerator modes are a series of regular (KAM) regions
in phase space, which are extended to infinity by succes-
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sively iterating the map. In a separate work, I show that
the flights dominate diffusion; existence of accelerator
modes inevitably gives rise to superdiffusion at asymp-
totically long times [11]. In the present investigation I
restrict myself to area-preserving maps without acceler-
ator modes. As a convenient example, I use the so-called
fourfold stochastic web map, which has no accelerator
modes for the parameters I consider.
The fourfold stochastic web map M is defined as

Ty = —Yp—1 — asin(zs_1),

Yt = Tg—1-

This map has 27 periodicity in both = and y direc-
tions. Unstable fixed points of M* form a square lat-
tice of side length v/2w. They are connected by a global
chaotic region which looks like a network of channels for
small a as shown in Fig. 1. As a — 0 the thickness of
the channels decreases exponentially [12] and the chan-
nels degenerate into straight lines. The channels parti-
tion the phase space into cells. The centers of the cells
are stable fixed points, and surrounding them are local
KAM regions. Passing through each unstable fixed point,
there is one stable invariant manifold and one unstable
invariant manifold of the fourth order map M*. Useful

FIG. 1. Partition of phase space into cells and an illustra-
tion of particles’ motion.
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information on properties of the manifolds can be found
in Lowenstein’s work [13]. The precise boundary between
cells consists of curves formed by joining the manifolds at
their primary intersection points [14]. With this choice
of boundaries, an orbit of M* can cross over the bound-
ary only in the region near the intersection point where
a so-called turnstile is formed [14], and the orbit will not
return to its previous cell before it finishes one revolution
in the new cell.

Zaslavsky and co-workers have investigated various as-
pects of this web map, including the diffusion exponent
[15-17]. Their numerical results show the likelihood of
subdiffusion for small a. Lichtenberg and Wood have
also studied diffusion of this map for small-a values [18].
Their numerical results show two interesting phenomena:
average revolution numbers per boundary crossing no-
ticeably depend on the length of orbits on which statis-
tics are made, even though the lengths are of the order
of 10° iterations; the root-mean square of particle dis-
tribution obtained by directly iterating orbits is about
1.5 to 2 times the value derived from iteration number
per boundary crossing. They have correctly attributed
these to long trapping by the KAM boundaries. They
have also correctly pointed out that the long trapping
tends to increase the rate of intermediate-time-scale dif-
fusion over the asymptotic value. Though the authors
have presumed somehow the diffusion is normal, and the
agreement is reasonably good, the possibility that the
diffusion is actually subdiffusive is not ruled out. In
the present work, I will carefully investigate the long
trapping, then I will set up a quantitative relationship
between the long trapping and “anomalies” in diffusion
statistics. I shall demonstrate rigorously that, due to
characteristics of the power exponent of trapping time
statistics of KAM boundaries, asymptotic subdiffusion
is impossible, but in the case of weak chaos, there is a
long subdiffusive transient, and this explains the appar-
ent anomalies in the above mentioned works. Based on
this work, I conclude that subdiffusion cannot be found in
area-preserving mapping with globally uniform stochas-
tic structure.

Besides the 27 translational symmetries in both = and
y directions, the fourth iterate of the map commutes with
a linear operator L(z,y) = (r—x,7+y) and the inversion
operator. From these, we know that the cell centered at
(0,0) and that at (x,m) are equivalent [13]. The phase
space can be tiled by using one elementary cell. From
symmetry consideration, one can derive that a particle
should have an equal probability to exit from any side of
the elementary cell. For a = 0.3, out of 477987 events,
there are 119484, 119508, 119630, and 119365 events
exiting from the four different sides, respectively. Their
deviations from N = 1/4 x 477987 are —12.75, 11.25,
133.25, and —131.75, respectively; all of them are within
VN = 345.683.

Since the centers of the cells form a square lattice of
width /27, I view the motion of the particle as follows.
The particle is making a random walk on the lattice.
It stays at a site for a time randomly selected out of a
distribution function and then jumps to one of its nearest
neighbors. Let 7, ¢(7) denote the pause time and its
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distribution, respectively. Figure 2 shows the cumulative
survival time distribution for a = 0.3, defined by £(t) =
ft°° ¢(7)dT. We see that the asymptotic decay is faster
than =2, so the average time spent in a cell exists. Define
P(n,t) as the probability that the particle has moved
just n steps in time ¢t. The correlation of exit direction
can be regarded as independent of ¢ and n because the
probability of strongly correlated events is small; it is
found to be 0.137.

Let £ denote the Laplace transformation with the
transform f(u) of a function f(t) defined as

flw) = L(f@t) = /0 ~ e “tf(t)dt.

Since e~*! is a rapidly decreasing factor, the large-t be-
havior of a function is reflected in the corresponding
small-u behavior of its Laplace transformation.

One can express the second moment of = as

@) = 3 311+ c(n, ))(VEr)nP(n, 1),

n=0

where c(n,t)’s are the correlation terms. Since empiri-
cally they are small and quite independent of n and ¢, I
set it equal to a constant €. Taking the Laplace transfor-
mation of the above equation,

(#2(u)) = (1 4 €)n? Z nP(n,u). (1)

n=0
Since
t
P(n,t) = /0 drP(n—1,t — 7)é(r),
one has
P(n,u) = 11 - $(u)]§"(w).
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FIG. 2. Survival time distribution for a = 0.3. The ending
part decays as t~1-2.
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Combining this with Eq. (1), one gets

72 (u)) = 21 4;(“)
@) =+ 9rt E T 2)
When ¢(t) decays faster than ¢=2,
d‘ZEL") - /Ooo tp(t)dt = —7
So, since
1 - ¢(u) ~ 7u,

1
=2 2
~ (1
(£%(u)) ~ (1 + &) a2
one can get

t
(2(t)) ~ (14 e)n?=.
T
This corresponds to normal diffusion.
If for large t

z(t) ~ t°,
with 0 < a < 1, then for small u,
(& (u)) ~ =0+,
é(u) >~ 1 — const x u®.

This means for large ¢, ¢(t) ~t=17, £(¢) ~ t~=. In this
case T does not exist.

Numerical experiments by different authors [8,19,20]
for a variety of maps show that the tail part of £(¢) is
usually between t =13 and t~1'5. Meiss and Ott attribute
this to universal behavior near the last KAM curve, with
the universal properties controlling the power law and the
power exponent [21]. More recently, Zaslavsky et al. have
studied self-similarity of “islands-around-islands” struc-
tures. They use a model of a random walk on a self-
similar cluster and renormalization approach to explain
the phenomenon [7].

For the map I use, at a = 0.3, £(t) ~ ¢t~ 12, and
so, asymptotically, the diffusion should be normal, z2(t)
should approach (1+¢)n%t/7. Figure 3 shows the numer-
ical result. We see that the approach to normal behavior
is rather slow and there is a long transient regime. I will
show that this is because the asymptotic decay of the
trapping time distribution is only slightly bigger than
the critical value.

The following work is to find the leading anomalous
terms. To simplify the expression, I rescale the time and
space scales, setting the precoeflicient of Eq. (1) to 1, and
the average time in a cell 7 to 1. From Eq. (2) one can get
the deviation from the exact normal behavior (z%(t)) = ¢,

1 1

w? \ &) —(H"))‘

Since
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foy= 1220

:?_—_17

u—0

and when Re(u) > 0, £(u) < 1, one can get

1-¢€ 1— €(u)]?
[:(:Ilz(t) _ t) — E(u) + [ £Z(U)] +
u U
If for large ¢, £(t) =~ c1¢t7P~! with 0 < 8 < 1, then, for
small u,

£(u) >~ 1 — e, T(—=B)uP.

Setting ¢ = ¢1[-I'(—p)], and keeping the leading terms
(up to u), we obtain from Eq. (3) the expansion

1
u?

L(z2(t) —t) = — (cu® + Pu?P + u® + ctu?® —u),

A
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FIG. 3. Diffusion approaches normal behavior for a = 0.3.
In both (a) and (b) open circles represent the numerical re-
sult. (a) z2(t) vs t. Error bars of the numerical values are
smaller than the circle size. The straight line is given by
z%(t) = (1+¢€)7%t/7. (b) a in z*(t) ~ t*. The line is given by
a = dln[z?(t)]/dIn(t) with the value of z*(t) obtained from
Eq. (4).
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which gives

) -t ¢ -3 c? _28
t “Te-p’ Trte-2"
c? _38
Te-sm

48 _ ¢,

(4)

The quantities ¢ and 3 can be obtained from the sur-
vival time distribution. For ¢ = 0.3 they are 1.19 and
0.203, respectively. Figure 4 is a check of Eq. (4). Con-
sidering there is no adjustable constant in Eq. (4), the
agreement is good. All the above mentioned numerical
studies were done for several other values of a in the range
[0.25,1.0]. The results are similar.

From Eq. (4), we see whenever c is large enough (of
order 1), there should be a long intermediate anomalous
regime which is thousands of times the average pause
time. I have found for different maps (including the stan-
dard map) that whenever a KAM boundary is close to a
low order unstable fixed point, the cumulative distribu-
tion function £(t) decays slowly for time t in a range of
a couple of orders of magnitude of the iteration number
per revolution [18] of the boundary. This increases the
weight of the tail. And thus for weak chaos c is usually
large and so is the average pause time. A large anomalous
time regime follows as a result.

Although the power index of the survival time distribu-
tion £(¢) cannot be accurately calculated [7,21], all signs
show that it is greater than 1. Average trapping time
near any KAM boundary exists and the correlation of

—° ¢
G- 49)
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FIG. 4. Slowly decaying anomalous terms in z?(t). Open
circles represent the numerical results. The line is given by

Eq. (4).

the directions of walks leaving the boundary is short, so
any area-preserving map with a macroscopically uniform
stochastic structure should have asymptotically normal
diffusion. Just like for the case of superdiffusion, the
trapping power law is essential to a better understand-
ing.

The author would like to thank J. H. Lowenstein for
stimulating discussions.
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